

RESTOP: Retaining
External Peripheral State
in Intermittently‐Powered
Sensor Systems
USER MANUAL

Alberto R. Arreola
UNIVERSITY OF SOUTHAMPTON
Revised: 8th January 2018

1

1. CONTENT

2. Library .. 2

2.1. Config.h .. 2

2.2. RESTOP_func.h .. 3

3. Generic Functions ... 3

3.1. RESTOP_write .. 3

3.2. RESTOP_read ... 4

3.3. RESTOP_strobe .. 4

3.4. RESTOP_restore ... 4

3.5. RESTOP_VR_adj .. 4

2

2. LIBRARY

In order to incorporate the functionality of RESTOP, it is needed to include two headers files in the
main application:

a) #include "Config.h"
b) #include "RESTOP_func.h"

2.1. Config.h

In this file, the user defines the following parameters:

 Table. This parameter (#define Table size) is used to define the size of the Instruction History
Table. Here, size indicates the number of locations where the peripheral instructions will be
saved.

 Cap. This parameter (#define Cap value) is needed to set the capacitance value used as
energy buffer. This value is used by RESTOP to calculate and update the restore threshold
(VR) in the snapshotting routine of the transient computing approach.

 Vmin. This parameter (#define Vmin voltage) is the minimum operating voltage of the
system. It is also needed by RESTOP to calculate and update VR.

 reg_reset. This is an array where the user has to define the reset register of each attached
peripheral. The format is as follows:

reg_reset [] = {{reg_peripheral1}, {reg_peripheral2}, {reg_peripheralN}};

 The number of positions depends on the number of attached registers. If only one peripheral
 is needed, the user can remove the unused sections or just ignore them.

 cmd_write. This array is needed to define the command value for those peripherals that need
this parameter before a write operation. The format is:

cmd_write [] = {{cmd_peripheral1}, {cmd_peripheral2}, {cmd_peripheralN}};

The number of positions depends on the number of attached registers. If no command is
needed, all the array sections have to be filled with zeros, e.g. two peripherals are attached but
none of them needs a command:

cmd_write [] = {{0x0}, {0x0}};

 cmd_read. The function and format of this array are similar than the previous one but this is
for read operations.

 i2c_add. In this array, the user set the address for the I2C peripherals. The format is as follows:

i2c_add [] = {{add_peripheral1}, {add_peripheral2}, {addr_peripheralN}};

 Depending on the number that corresponds to the I2C peripheral is where the address has to
 be set and the others have to be filled with zeros, e.g. there are two attached peripherals, but
 the second is the I2C one, the array would be filled as follows:

i2c_add [] = {{0x0}, {0xEE}};

 pwr_pi. Here, the user has to set the power consumption of the MCU when issuing an
instruction through SPI and I2C protocols. The format is:

3

pwr_pi [] = {{W_SPI}, {W_I2C}};

The values have to be introduced in Watts. The first location is for the power consumption
when issuing instructions to SPI and the second for I2C peripherals. If only one type of
protocol is used, the other must be filled with zeros, e.g. a system where only an I2C peripheral
is attached, the array would be:

pwr_pi [] = {{0}, {0.002}};

 Time_spi. Here, the user set the time (in seconds) spent by the MCU to issue SPI peripheral
instructions of different number of bytes. The format is described below:

Time_spi [] = {{time_3params}, {time_2params}, {time_1param}};

From left to right, each position corresponds to the time taken to issue three, two and one
parameters per instruction, respectively (1 parameter = 1 byte). If the attached peripheral does
not operate with the three different number of parameters, the unused sections have to be filled
with zeros, e.g. if a peripheral only operates with two parameters per instruction, the array
would be filled as follows:

Time_spi [] = {{0}, {0.000120}, {0}};

 Time_i2c. This array follows the same format than Time_spi but this is for I2C peripherals.

Time_i2c [] = {{time_3params}, {time_2params}, {time_1param}};

2.2. RESTOP_func.h

This file contains the declaration of the functions required by RESTOP to save and issue each
peripheral instruction. The user is not expected to modify this file.

3. GENERIC FUNCTIONS

RESTOP is composed by three generic functions to perform read or write operations on the
peripheral, which are RESTOP_read, RESTOP_write and RESTOP_strobe. RESTOP also includes
two additional functions to restore the peripheral state (RESTOP_restore) and to adjust the restore
threshold (VR) before a power failure occurs (RESTOP_VR_adj). These functions are described in
this chapter.

3.1. RESTOP_write

This function performs write operations on the peripheral. It is composed by six parameters:

 RESTOP_write (Prv, ID, Register, Value, Burst, Protocol)

The first parameter is to define the criteria of Not-save (‘d0), Save (‘d1), Save-but-replace (‘d2), Save
and preserve (‘d5), Save-but-replace and Preserve (‘d6). The second parameter (ID) is to define the
peripheral to which the instruction will be issued (the value goes from 1 to N). The parameters
Register and Value are each one byte, corresponding to the register width of typical digital interface
peripherals. Burst is a flag to indicate if the instruction is one of a write-burst operation. From the
first instruction to the N-1, this flag is set to 1. The last one from the burst operation is set to zero.
Below, it is shown an example of how to use the burst flag when three burst instructions are issued:

4

1. RESTOP_write (1, 1, 0x0E, 0x2A, 1, 0);
2. RESTOP_write (1, 1, 0x00, 0x2B, 1, 0);
3. RESTOP_write (1, 1, 0x00, 0x2C, 0, 0);

In the first instruction, the Register where the values will be written is set. It is also enable the burst
flag. In the second instruction, instruction, the Register parameter is set to zero, and only the value to
be written and the burst flag are set. Finally, in the last burst instruction, the flag is set to zero.

The last parameter of this function (Protocol) is to define the protocol of the peripheral (0=SPI;
1=I2C).

3.2. RESTOP_read

This function performs read operations on the peripheral. The parameters are the same as in the
previous function, except for the Value that is not needed for read operations. This function returns
the read value from the peripheral.

 uint8_t RESTOP_read (Prv, ID, Register, Burst, Protocol)

3.3. RESTOP_strobe

This function performs write operations that, unlike RESTOP_write (), executes single byte
instructions. The criteria for the parameter is the same than in the previous functions.

 RESTOP_strobe (Prv, ID, Register, Protocol)

3.4. RESTOP_restore

This function is in charge of restoring the peripheral state. It has to be placed at the end of the restoring

routing of the transient computing approach. The function does not receive or return any value.

 RESTOP_restore ()

3.5. RESTOP_VR_adj

This function dynamically calculates the value for VR depending on the number of peripheral
instructions that are saved before a power failure. It has to be placed at the beginning of the
snapshotting routine of the transient computing approach and returns the new value for VR, which
has to substitute the one previously set.

 float VR = RESTOP_VR_adj ()

